
Serverless Azure
Michał Jankowski



www.jankowskimichal.pl

about
me

2

Michał Jankowski

architect / software developer / team leader

traveller / photographer

www.jankowskimichal.pl

mail@jankowskimichal.pl

@JankowskiMichal

github.com/MichalJankowskii



aim.

Learn how we can use 
Serverless in Azure in our 

solutions to improve our 
productiveness. 



www.jankowskimichal.pl 4

way
of working

A bit of theory, then a lot of demos and practice.

I would encourage you to work together and exchange 
your knowledge.

we should have fun



Steve Jobs, cofounder of Apple

Great things in business are 
never done by one person.
They're done by a team of 

people.



www.jankowskimichal.pl 6

we will
be working with

An event-based serverless compute experience to
accelerate your development. Scale based on demand
and pay only for the resources you consume.

Azure Functions

Provide a way to simplify and implement scalable
integrations and workflows in the cloud. It provides a
visual designer to model and automate your process
as a series of steps known as a workflow.

Logic Apps



todo.

We will provide Azure
Function backend for
registration form that will:

• validate data

• store customer data

• send thank you message

• send SMS to us each time 
new customer will register



www.jankowskimichal.pl 8

presentation
agenda

theory
Serverless in Azure environment 

azure functions
Main part of presentation. You 
will learn how to develop them 
correctly and in effective way.



www.jankowskimichal.pl 9

presentation
agenda

logic apps / flow
Later you will see that you can 
achieve the same effect with 

less code.

event grid
We will use Event Grid to 

integrate our solution and you 
will see how easily you can 

build applications with event-
based architectures. 



theory.



www.jankowskimichal.pl 11

types of
approaches

02Am I a good system 
administrator? When I should 

update servers’ OS?

03 Finally I can focus on 
features development.

01
Do I really know how 

hardware works? What 
hardware specification 

should be delivered?

On-Premises IaaS PaaS Serverless

Applications Applications Applications Applications

Data Data Data Data

Runtime Runtime Runtime Runtime

Middleware Middleware Middleware Middleware

O/S O/S O/S O/S

Virtualization Virtualization Virtualization Virtualization

Servers Servers Servers Servers

Storage Storage Storage Storage

Networking Networking Networking Networking

Managed by us Managed by vendor



www.jankowskimichal.pl 13

approaches
summary

IAAS PAAS CONTAINER SERVERLESS

Scale
Refers to the unit that is used to scale 

the application

VM Instance App Function

Abstract
Refers to the layer that is abstracted by 

the implementation

Hardware Platform OS Host Runtime

Unit
Refers to the scope of what is deployed

VM Project Image Code

Lifetime
Refers to typical runtime of a specific 

instance

Months Days to months Minutes to days Milliseconds to Minutes

Responsibility
Refers to the overhead to build, deploy, 

and maintain the application

Applications,
dependencies,
runtime, and

operating system

Applications and
dependencies

Applications,
dependencies, and

runtime
Function



www.jankowskimichal.pl 14

serverless
characteristics

server abstraction
There is no server managing 

tasks.

productivity
Reduce tasks related to 
infrastructure. You can focus 
on development activities.

event driven
Function does not work when 

there is no event triggering it. It 
can also instantly scale up.

focus on features
And then you are able to focus 
on business logic of your app.

microbilling
Pay only when there are events. 

But think about DDOS on your 
wallet.

faster time to market
All items mentioned together 
allow you to reduce time to 
market. 



www.jankowskimichal.pl 15

serverless
in Azure

An event-based serverless compute experience to
accelerate your development. Scale based on demand
and pay only for the resources you consume.

Azure Functions

A single service for managing routing of all events
from any source to any destination. Designed for high
availability, consistent performance and dynamic
scale. Event Grid lets you focus on your app logic
rather than infrastructure.

Event Grid



www.jankowskimichal.pl 16

serverless
in Azure

Provide a way to simplify and implement scalable
integrations and workflows in the cloud. It provides a
visual designer to model and automate your process
as a series of steps known as a workflow.

Logic Apps

Is a service that allows you to create automated
workflows between your favourite applications and
services to synchronize files, get notifications, collect
data, and more.

Flow



www.jankowskimichal.pl 17

serverless
in Azure

Was built from the ground up with global distribution
and horizontal scale at its core. It offers turnkey global
distribution with multi-master support across any
number of Azure regions by transparently scaling and
replicating your data wherever your users are.

Cosmos DB



azure 
functions.



www.jankowskimichal.pl 19

common
scenarios



Azure Function as a 
glue

My favourite usage 
scenario

Arduino
 Azure Function
 ToDoist



www.jankowskimichal.pl 21

key
features

C#, F#, Node.js, Python, PHP, batch, 
bash, or any executable

choice of languages

Consumption plan vs App Service plan

pay-per-use pricing model

Functions supports NuGet and NPM

bring your own dependencies

Protect HTTP-triggered functions with
OAuth providers such as AAD, Facebook,
Google, Twitter, and Microsoft Account

integrated security

Defined services can trigger your function
or can serve as input and output for your
code.

simplified integration

Set up continuous integration and deploy
your code through GitHub, Visual Studio
Team Services, and other supported
development tools.

flexible development

The Functions runtime is open-
source and available on GitHub

open-source



We will need additional time for our 
function start. Normal application are 
always ready for response.

time of starting

Functions are stateless. You should save 
somewhere state if you need.

think about state

It is not so easy to start your function 
locally and it can be run only under 
Windows.

local environment

It will be hard to change your vendor in 
latter stage of your application life.

vendor locking



www.jankowskimichal.pl 23

maybe
we should start coding



demo
1.



www.jankowskimichal.pl 25

is your 
environment ready

• Azure account

• Visual Studio Code

• Visual Studio 2017 version 15.7.x with 

Azure Functions Tools for Visual Studio 

extension installed

• azure-functions-core-tools

• Azure Storage Explorer

• Postman

applications needed

https://goo.gl/Fq932B

links to installers



www.jankowskimichal.pl 26

this is time
for you

1. Create your first function in Azure Portal (*):

a. Check compilation and errors

b. Execute your function

2. Create simple calculator API that will support addition, subtraction,

multiplication and division (*)

3. Create function that will execute every 30 seconds and log time

a. Add possibility to change time format without changing the

function code

4. Change calculator URLs to more readable form by using Azure

Functions Proxies

5. Create Swagger documentation for calculator API

https://goo.gl/rZx11C
(*) mandatory



triggers
& bindings.



www.jankowskimichal.pl 28

triggers
& bindings

type 1.x 2.x trigger input output
Blob Storage + + + + +

Cosmos DB + + + + +

Event Grid + + + - -

Event Hubs + + + - +

HTTP + + + - +

Microsoft Graph Excel tables - + - + +

Microsoft Graph OneDrive files - + - + +

Microsoft Graph Outlook email - + - - +

Microsoft Graph Events - + + + +

Microsoft Graph Auth tokens - + - + +

Mobile Apps + + - + +

Notification Hubs + - - - +

Queue storage + + + - +

SendGrid + + - - +

Service Bus + + + - +

Table storage + + - + +

Timer + + + - +

Twilio + + - - +

Webhooks + - + - +



classic 
approach

public static void Run(string myQueueItem, TraceWriter log)
{
log.Info($"C# Queue trigger function processed: {myQueueItem}");

}

{
"bindings": [

{
"name": "myQueueItem",
"type": "queueTrigger",
"direction": "in",
"queueName": "myqueue-items",
"connection": "AzureWebJobsDashboard"

}
],
"disabled": false

}

run.csx:

function.json:



public static class DemoFunction
{

[FunctionName(„DemoFunction")]
public static void Run(
[QueueTrigger("myqueue-items", Connection = "AzureWebJobsDashboard")]string myQueueItem,
TraceWriter log)
{

log.Info($"C# Queue trigger function processed: {myQueueItem}");
}

}

new 
approach



tools.



www.jankowskimichal.pl 32

there are
some options

azure-function-core-
tools

CLI that helps you working with 
Azure Functions locally

Light code editor. You need to 
use other tools to be able to do 
everything that VS 2017 can do.

VS Code

Native support for Azure 
Functions. Possibility of pre-
compilation, deployment and 

debugging

VS 2017 v15.7.x



cold start.

After some time without any
action your function will be
turned off / terminated.

Then next request will take
longer – function will need to
recover environment, reload
dependencies and compile it
again.

Solution for that is pre-
compilation of your function.



pre-compilation.

1. We can use full features on Visual
Studio, including IntelliSense.

2. We can easily write unit test codes.

3. We can easily attach function codes to
existing CI/CD pipelines.

4. We can easily migrate the existing
codebase with barely modifying them.

5. We don’t need project.json for NuGet
package management.

6. We can reduce the total amount of cold
start time by removing compiling
on-the-fly when requests hit to the
Functions.



demo
2.



www.jankowskimichal.pl 36

this is time
for you

We will provide Azure Function backend for

registration form that will:

1. Validate data

2. Store customer data

3. Send thank you message

4. Send SMS to you each time new customer will

register

https://goo.gl/bX7yJp



www.jankowskimichal.pl 37

is your design
like this?

1. Request

2. Validation

4. Send e-mail

6. Response



demo
3.



good
practices.



www.jankowskimichal.pl 40

good
practices

avoid long running functions
Large, long-running functions can cause unexpected timeout issues. A function can become large due to
many dependencies. Importing dependencies can also cause increased load times that result in unexpected
timeouts. Whenever possible, refactor large functions into smaller function sets that work together and
return responses fast.

write function to be stateless
Functions should be stateless and idempotent if possible. Associate any required state information with
your data. For example, an order being processed would likely have an associated state member. A function
could process an order based on that state while the function itself remains stateless.

cross function communication
When integrating multiple functions, it is generally a best practice to use storage queues for cross function
communication. The main reason is that storage queues are cheaper and much easier to provision. Service
Bus topics are useful if you require message filtering before processing. Event hubs are useful to support
high volume communications.



www.jankowskimichal.pl 41

good 
practices

write defensive functions
Assume your function could encounter an exception at any time. Design your functions with the ability to
continue from a previous fail point during the next execution. Depending on how complex your system is, you
may have: involved downstream services behaving badly, networking outages, or quota limits reached, etc.
All of these can affect your function at any time. You need to design your functions to be prepared for it.

use async code but avoid blocking calls
Asynchronous programming is a recommended best practice. However, always avoid referencing the Result
property or calling Wait method on a Task instance. This approach can lead to thread exhaustion.

don't mix test and production code in the same function app
Functions within a function app share resources. For example, memory is shared. If you're using a function
app in production, don't add test-related functions and resources to it. It can cause unexpected overhead
during production code execution. Be careful what you load in your production function apps.



www.jankowskimichal.pl 42

Do we design it 
correctly

“Many of the solutions that we consider best 
practice are solutions for problems that no 
longer apply”

Gojko Adzic, MindMup / Claudia.js



www.jankowskimichal.pl 43

do we design it 
correctly

01 architecture optimised for 
reserved resources vs 
bundling into apps 

04 difficult to replicate 
"production" vs multiple 
version of functions

02 paid for reserved resources 
vs utilised capacity 05 layered architecture vs 

smart composition

03 optimized for quick fail-
over vs time to start 06 high vs low cost

Play arbitrage with different charging 
models



www.jankowskimichal.pl 44

are we ready
for the revolution?



www.jankowskimichal.pl 45

it should look like this
- part 1

1. Request 3. Queue for processing

4. Response with
information how
to check status

5. Request –
status check

6. Response



www.jankowskimichal.pl 46

it should look like this
- part 2

1. Request 3. Queue for processing

4. Respone with
information how
to check status

F. Response

E. Request –
status check

B. Validation

C. Queue for 
processing



www.jankowskimichal.pl 47

it should look like this
- part 3

Save data

Send e-mail

Send 
SMS

1. Read data

Read data

2. Queue for 
processing



www.jankowskimichal.pl 48

it should look
like this



demo
4.



www.jankowskimichal.pl 50

azure functions
deployment

by simple file copy

• Integration with different repositories (Bitbucket,
Dropbox, local Git, GitHub, OneDrive, …)

• Your deployment source must have correct source
configuration and structure – the code for all of the
functions in a given function app lives in a root folder
that contains a host configuration file and one or
more subfolders, each of them contain the code for a
separate function

• Your functions can be affected by cold start

• Sometimes Azure Portal does not detect changes in
files after deployment

• Very cheap for configuration

• Good for POC – solutions

• Not able to detect compilation errors

• Professional approach for larger projects

• You will be able to also configure environment
provisioning

• Your code and functions will be compiled
before deployment

• You will be able to check code quality, run unit
tests and detects compilation errors

• You can have your own code structure

• Higher cost of configuration

• More options for different customisations and
integrations

by CI (VSTS, Jenkins, TeamCity)



logic
apps.



Logic Apps provide a way to simplify and implement scalable 
integrations and workflows in the cloud. It provides a visual 
designer to model and automate your process as a series of 

steps known as a workflow. There are many connectors across 
the cloud and on-premises to quickly integrate across services 
and protocols. A logic app begins with a trigger (like 'When an 
account is added to Dynamics CRM') and after firing can begin 

many combinations of actions, conversions, and condition logic.



connectors

Most powerful element of
this solution. Right now
you are able to connect to
196 systems.

Basically, connectors are
web APIs that use REST
for pluggable interfaces,
Swagger metadata format
for documentation, and
JSON as their data
exchange format.



www.jankowskimichal.pl 54

actions 
& tiggers

Actions are changes directed by a user. For
example, you would use an action to look up,
write, update, or delete data in a SQL database.
All actions directly map to operations defined
in the Swagger.

actions

Triggers can notify your app when specific events
occur. For example, the FTP connector has the
OnUpdatedFile trigger.
There are two types of trigger:
• Polling Triggers: These triggers call your service

at a specified frequency to check for new data.
When new data is available, it causes a new run of
your workflow instance with the data as input.

• Push Triggers: These triggers listen for data on an
endpoint, that is, they wait for an event to occur.
The occurrence of this event causes a new run of
your workflow instance.

triggers



www.jankowskimichal.pl 55

sample connector
twitter

limitations

• Maximum number of connections per 
user: 2

• API call rate limit for POST operation: 
12 per hour

• API call rate limit for other operations: 
600 per hour

• Frequency of trigger polls: 60 seconds

• Maximum size of image upload: 5 MB

• Maximum size of video upload: 15 MB

• Maximum number of search results: 
100

• Mentioning a @user while posting a 
tweet is not supported

triggers

• When a new tweet is posted

actions

• Get followers

• Get following

• Get home timeline

• Get my followers

• Get my following

• Get user

• Get user timeline

• Post a tweet

• Search tweets



demo
5.



www.jankowskimichal.pl 57

this is time
for you

Try to implement form back-end with Logic Apps.

Play with Logic Apps



demo
6.



flow.



Create automated workflows between your favourite apps and 
services to get notifications, synchronize files, collect data, and 

more…



For simple business 
optimization

You do not need
to have Azure 
subscription

Build on top of 
Logic Apps



event 
grid.



www.jankowskimichal.pl 63

event
grid

• a single service for managing routing of all events from any
source to any destination

• advanced filtering - filter on event type or event publish path
to ensure event handlers only receive relevant events

• reliability – utilize 24-hour retry with exponential backoff to
ensure events are delivered and ensure that message will
be delivered once and only once

• high throughput – build high-volume workloads on Event
Grid with support for 10 millions of events per second

• supports only subset of apps

• pay-per-event - pay only for the amount you use Event Grid



demo
7.



www.jankowskimichal.pl 65

this is time
for you

Please refactor solution in the way that all queues will 
be removed and EventGrid will be used.

Play with Event Grid

https://goo.gl/ncZGNY



www.jankowskimichal.pl 66

it should look
like this



demo
8.



summary.

We have learnt possibilities 
of Azure Serverless 

environment

You should know how to 
develop and deploy your 

solution to cloud

You can do it in effective way



www.jankowskimichal.pl 69

do you have any
questions?

www.jankowskimichal.pl

@JankowskiMichal

mail@jankowskimichal.pl

github.com/MichalJankowskii



www.jankowskimichal.pl 70

more
information

• https://docs.microsoft.com/en-us/azure/azure-
functions/

• https://github.com/Azure/azure-functions-core-
tools

• https://github.com/Azure/Azure-Functions

• https://docs.microsoft.com/en-us/azure/event-
grid/

• https://docs.microsoft.com/en-us/azure/logic-
apps/

• https://github.com/Azure/azure-webjobs-sdk-
extensions/

https://docs.microsoft.com/en-us/azure/azure-functions/
https://github.com/Azure/azure-functions-core-tools
https://github.com/Azure/Azure-Functions
https://docs.microsoft.com/en-us/azure/event-grid/
https://docs.microsoft.com/en-us/azure/logic-apps/
https://github.com/Azure/azure-webjobs-sdk-extensions/


www.jankowskimichal.pl 71

thank
you

www.jankowskimichal.pl

@JankowskiMichal

mail@jankowskimichal.pl

github.com/MichalJankowskii


